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ABSTRACT

During this funding period, a semi-classical macro-kinetic theory that describes the
dynamic behavior of carriers in a semiconductor under the influence of space-time
varying fields has been formulated. The macro-kinetic model is considerably easier to
implement numerically than Monte Carlo methods or those based on the Boltzmann
Transport Equation (BTE). Moreover, the macro-kinetic model requires orders of
magnitude less computer time to run. A Monte Carlo method has been developed for
obtaining the electron energy distribution, transport parameters, and rate coefficients
in multi-valley semiconductors. The procedure requires an order of magnitude less
time than conventional Monte Carlo techniques.
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. OVERVIEW OF RESEARCH PROGRAM
I. INTRODUCTION

High Power Scmiconductor Switehes (HPSS) are
receisiag considerable attention for the promise they offer
to pubse power technology.” ™ This promise is founded on
the fact that with seimiconducting materials as the
swiiching medium, it is possible to obtain: (a) high current
densities over large arcas, (b) high carrier production and
relaxation rates, (¢) conductivity modulation over several
orders  of magnitude, and (d) high diclectric ficld
strongths. HPSS may be developed that have lower
inductance and forward drop, higher rep-rate, longer
lifetime, and arc more compact than comparable gas
switches. In addition, simple and compact (re-usable)
opening switches and other pulse power devices (such as
frozen wave generators) seem to be realizable with
semiconductor  switching tcchnology.3 Optically or
electrically 1riggered bulk and junction devices and
externally controlled bulk devices are being investigated in
a varicty of geometries and covering a wide range of
puramctcrs.]"“ Semiconducting materials that have been
considered are Si, HI-V’s, and diamond.

With AFOSR support, our research activitics have
focused on the basic physics of HPSS devices. Our aim
has been to develop a quantitative understanding of the
role of the various microscopic processes, material
parameters, trap dynamics, and space-charge in shaping
the behavior of HPSS. This knowledge is necessary for
guiding the scaling of the present low power technology to
the regime of interest in pulse power applications.
Morcover, with sufficient understanding, it may be
possible to tailor the electrical properties of
semiconductor matcerials  (beyond that of density
modulation) for specific applications. During this contract
period, we have developed modcels for describing the
dynamics of the carricrs under the influence of space-time
varying ficlds. In the next section, a summary of the
accomplishments made during the period of this coniract
is given. Scctions III and IV are devoted to a detailed
discussion of the results obtained.

II. REVIEW OF ACHIEVEMENTS AND
ACTIVITIES DURING THE CONTRACT
PERIOD

During this past funding period we have accomplished
the following:

(1) A semi-classical macro-kinetic theory that
describes  the dynamic behavior of carriers in a
semiconductor under the influence of space-time varying
ficlds has bcen formulated. It is essentially a "properly
closed” sct of moment equations. That is, a macro-kinetic
distribution is introduced and the equation of evolution
for this distribution is used to close the moment equations.

In this fashion, the transport parameters and rates that
appear in the moment equations can be determined from
first principles (in particular, without phenomenological
assumptions regarding the form of distribution). This is

particularly important for describing high ficld transport
in "multi-valley” semiconductor materials such as gallium
arsenide (GaAs) (sce next section).

A single valley macro-kinctic model  has  been
developed  and  compared  to  exact Monte  Carlo
simulations of carricr dynamics in GaAs and the results
have been found to be in reasonably good agreement.
The macro-kinetic model is considerably easier (o
implement numecrically than Monte Carlo methods or
those bascd on the Boltzmann Transport Equation (BTE).
Morcover, the macro-kinetic model requires orders of
magnitude less computer time to run. This theory has
been published in a paper that appeared in the Journal of
Applied Physics (August 1988) and is presented in Section
1. This theory is now being uscd to develop a threc
valley moment model of carrier transport in multi-vallcy
scmiconductors.

A Monte Carlo mcthod has been developed for
obtaining the electren energy distribution, transport
parameters, and rate coefficients in multi-valley
semiconductors. The procedure requires an order of
magnitude less time than conventional Monte Carlo
techniques. The technique has been discussed in a paper
that appeared in the Journal of Applied Physics (April
1988) and is presented in Section IV. At present, a
number of papers relating other resuits that have been
obtained are in preparation.

Published Papers:

1. "Nonequilibrium Macroscopic Models of Carricr
Dynamics in a Semiconductor,” J. Appl. Phys. 64,
1220 (1988) (with M. Cheng and C. Wu).

2.  ‘'Electron Energy Distributions, Transport
Parameters, and Rate Coefficients in GaAs," J.
Appl. Phys. 63,2322 (1988) (with M. Cheng).

A number of presentations were also made during this
period at various workshops on HPSS sponsored by both
ONR and AFOSR. Abstracts for papers presented at the
spring meeting of the American Physical Society are given
in Section V. Also during this period, one student (M.
Cheng) received his MS degree and is currently working
on his Ph.D. We were invited to visit a number of
government laboratories that have shown interest in our
results (Harry Diamond and EDTL/Fort Monmouth
Laboratorics).

1. M. Kristiansen and W. Portnoy, Workshop on Solid
State Switches for Pulsed Power, Tamaron,
Colorado, January 1983.

[

B. Scnitzky, Workshop on New Direction in Solid
State Powecr Switches, Polytechnic University,
Farmingdale, NY, 1985.

3. K. H. Schocnbach and M. Weiner, Workshop on
Optically and Electron-Beam Controlled
Semiconductor Switches, Norfolk, VA, 1988.
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11I.  NONEQUILIBRIUM MACROSCOPIC
MODELS OF CARRIER DYNAMICS IN A
SEMICONDUCTOR

ILINTRODUCTION

The dynamic belaior of free carvers i semicondues
tor under the influenve of a ticld may be described i the
semi-classical reginie by the ume-dependent distribution
funcrion, flk.r.) Uvhere w is the carrier momentum, ris s
position, and ¢is time) H Given the initial state of the carni-
ers. the distribution function at any other time may be ob-
tained from either (he Boltzmann transport equation
(BTE).” " or from Monte Carlo simulations.” " When the
fields are changing in space time it is. tn general, very diffi-
cult to obtain the solution to the BTE. Moreover, the Monte
Carlo approach, although sinple toimplement, s very time
consuming and in some cases (depending on the number of
test particles useds prolbitive Once the distribution func-
tion is found. destred macroscopie properties (which can be
measured) can becaleulated by averaging the carresponding
microscopic properties over the distribution,'

An alternate approach for obtaining the macroscopic
state of the carriers is tn terms of moments of the distribu-
aon. In general, an exact description of the state requires an
infintte set of moments (this is equivalent to the fact that we
need an infinite set of moments to spectfy the distnibution /7).
These moments obey a hierarchy Cinfinite set) of equations
ohtained by taking moments of the BT Tt will be assumed
that for the situations of interest a finite set of moment equa-
tions can be used to describe the behavior of the carriers.” To
assess the accuracy of this finite set, the results for some
representative cases must be compared with those obtained
from the exact distribution function.

This paper focuses on how to obtain a closed set of mo-
ment equations which are valid in the presence of space-time
varying fields. This subject has recently received consider-
able attention because of the deficiency of the drift-ditfusion
equation in the analysis of high-frequency and submicron
devices.'"""* The dnitt-diffusion equation is based on the as-
sumption that the carrier momentum distribution i< in equi-
librium with the local, instantaneous, appliced ficld. This re-
stricts the validity of the equation to slowly varying fields
and large-size devices.'' However, for (semiclassical) de-
vices with very small spatial and/or temporal scales. non-
equilibrium phenomena, such as velocity overshoot,''!
dominate the transport behavior of carriers. In this case, the
use of BTE or an equivalent nonequilibrium set of moment
cquations is essential.

A number of approaches have been proposed for obtain-
ing a closed set of moment equations. These approaches can
he divided into three general categories, each based on the
respective assumption that (a) for small electric fields the
distribution function can be represented by two terms in an
cxpansion in terms of Legendre polynomials,'®'® (b) the
distribution function is a displaced Maxwellian'’"' when
the carrier concentration is sufficiently high, and (c) the
unknown variables and coefficients appearing in the mo-
ment equations are assumed to be functions of mean energy
only and are obtained from phengmenological equa-
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tnons 7 The first approach is closest in spirit to a deriva-
non based on first principles. This is important since it can
provide gndance as to where the model is likely to fail

In the next section, a mathematical formulation of the
problem and the foundation for an approach toits solution is
presented. This approach is based on the fact that the mo-
ment equations vary in a slower space/time scalz than the
BTE. Since little is known about the properties of the scatter-
ing operators in the BTE for the case of a semiconductor, we
have used the physical knowledge derived from the moment
cquittions to implement an averaging scheme over the fast
variations of the BTE. It is shown that it is sufficient to use
the characteristic times of the moment equations to effect a
truncation scheme and prescribe a procedure for arriving at
a closed set of equations. This approach has also been dis-
cussed in connection with electron dynamics in gases.”* In
Sec. 111, closed sets of moment cquations are derived for
three levels of description. These equations have been used to
daescribe the behavior of electrons in GaAs subjected to step
fields. Although, the method presented in this paper can be
used to derive a multivalley macroscopic model, a single-
salley model has been used for GaAs. The results for the
average velocity and mean energy obtained with this formu-
lation are compared with those obtained using Monte Carlo
methods. For the Monte Carlo calculations, a three-valley
model for GaAs has been used. The results from these two
modeis are in reasonabiy good agreement. However, the sin-
gle-valley model in this case does not provide an accurate
description of the behavior at electric fields above the thresh-
old field (about 3.5 kV/cm for GaAs) for the Gunn cffect
duc to strong intervalley scatterings. Some concluding re-
marks arc given in See. V.

Il. FORMULATION OF THE NONEQUILIBRIUM
MACROSCOPIC DESCRIPTION

For simplicity in notation (50 that subscripts referring
to different types of carriers need not be introduced), the
discussion will focus on the dynamics of clectrons in a single
valley. A similar treatment holds for clectrons in other val-
leys (also for holes in the valence band), with proper consid-
erations given to interactions between the various valleys
and types of carriers. Extension to multivalley description is
straightforward. The situatiens of interest may be described
by a distribution function in (x,r) space, /' (k,r.2). This func-
tion obeys the B1E; namely,'*

3, f+ vV, f+ (¢/WEV, f=1I(f). (h

where v is the macroscopic carrier velocity, 1Y -~ [(r,0) is the
electric field (either externally applied or arising from space
charge), and I (f) is the linear scattering operator. v is de-
fined as the k-space gradient of the microscopic cnergy €;
that is, v = i~ 'V_e(k). No specific form for the operator [
need be assumed at this time. This operator describes a num-
ber of physical processes (interactions between carriers and
lattice) which occur in different space-time scales. The
scales of interest are the fine-grained (kinctic). where
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moment kept i the descrption. The cquations tor the mo-
ments are obtained by taking appropruately werghted inte-
arals (in k space) of Eq. ¢ ). The equations for the first
three moments [namely, density #(r.0), mean encrgy €(r.r),
and average momentum «(r.r) ], are

dn+ V-(nu) = vn, (2a)
3,(n€) + V-{ev) —gE-nu= - v né, (2b)
d,(nk) + V-(xv) —gE/n = — v, 1K, (2¢)

where the bracket implies an average over the distribution, u
is the average velocity [ = fvfde =% ')V e(k)fdx].
and v, v, and v, are the (space-time dependent) effective-
carrier-gain, energy exchange, and momentum exchange
frequencics. These frequencies are defined by

vn = J‘ I( fHde, (3a)
v,onE = | etk dx, (i)
N (KI(/ ydK. {3¢)

Since it is difficult to ascribe physical significance to higher-
order moments, their equations of evolution are seldom writ-
(e

Unlortunately, any finite set of moment equations is not
determinate.” For example, the set of Egs. (2) contains un-
known averages over the distributions (quantities in brack-
cts) and unknown rates [Egs. (3)]. To calculate these un-
kuowns and thus arrive at a determinate set of equations for
S.. / nceds tobe found. A similar problem arises in classical
gas kinetics,” ™ and in electron kinetics in ionized gases.??
In contrast to classical gas dynamics and in similarity with
iomized gases, very little is known about the properties of
cither I( /). or the operator (¢/R)E-V, — I( f)inEq. (1).
Because of this, a more physical approach is proposed for
closing the moment equations. The key to this approach is
the use of information from the macroscopic equations to
cffect the truncation. This is outlined below.

First, the moment equations are ordered according to
their characteristic scales. This step requires a priori assump-
tions about the relative magnitude of these scales. They can
be made from physical considerations. In any event, the or-
dering that is used needs to be confirmed after the solution
has been found. Equations (2a)~(2c) have been ordered ac-
cording to their characteristic times. These times are (in de-
creasing magnitude): 7 (effective carrier production/loss
time), 7 (energy exchange time), and 7, (momentum ex-
change time). The higher moment equations would also
have to be ordered accordingly. It is assumed that their char-

acteristic times are smaller than those defined above. Note
., i semiconductor.!

Neat, the number of moments in the state vector S, is
detesmuued Trom physical consideration, and from the scale
of the destred description. Alternatively, the number of mo-
ments that are used determines the coarseness of the macro-
soupic deseription. This is because the model is only valid for
tme seales of the order of the smallest characteristic time
contamed inalinite set of equations.

Finally, note (hat the distribution function f which
satisfies Bg. (1) contains information to all orders of time
greater than a microscopic scattering time."*** The micro-
scopic scattering time is, in general, much smaller than the
characteristic times in any finite set of moment equations.
The distribution function f ccntains ““too much informa-
tion™ compared to the state vector Sy, in the scale of the
desired description. That is, the unknown variables and pa-
rameters in the S, description do not follow the fast varia-
tionsin /. Thus, to obtain a determinate set of moment equa-
tions, it is sufficient to use an *‘f’which only contains infor-
mation in the scale of the moment equations. This
distribution, the macroscopic distribution function f,,,
obeys a ‘“‘macroscopic-kinetic equation.” The equation of
evolution for fy,, together with the finite set of moment equa-
tions, form a closed set. This set can be used to describe the
nonequilibrium dynamics of the carriers in a time scale cor-
responding to the characteristic times of the moment equa-
tions. This description is termed nonequilibrium because f,
may be space-time dependent. In fact, in the time scale of the
moments, it s equivalent o /.

A number of procedures can be used to arrive at an
equation for f3,. The objective in any of these procedures is to
change the scale of Eq. (1) from the microscopic to that of
the finite set of moment equations.?*?” In this paper, the
technique proposed by Bogoliubov is used.”® A problem
arises when trying to solve the equation for f,,. This has to do
with the issue of assignment of initial values to f,,.%* In this
paper, it will be assumed that the moments of f,, correspond
to the (approximate) macroscopic state. To solve the equa-
tions for f,,, it is still necessary to know the various micro-
scopic scattering processes for electrons in a given semicon-
ductor. After solving for f,,, Egs. (2) and (3) can be used to
describe the electron dynamics in the semiconductor (see
Sec. IV). The procedure outlined above is used in the next
section to obtain closed sets of moment equations valid in
three different regimes (time scales).

that  general, 7, > 7

11l. THE NONEQUILIBRIUM MACROSCOPIC
EQUATIONS

The approach outlined in the previous section will now
be used to obtain the nonequilibrium macroscopic equa-
tions. The characteristic times of the macroscopic equations
[Egs. (2a)~(2c)] can be used to define various levels of
descriptions. The most coarse-grained description is valid
for times in the order of = (see Sec. II). From Egs. (2a)-
(2c), since v < v, <v,,, there is a time for which the mean
energy and average momentum of the carriers have relaxed
to a state of quasiequilibrium where their subsequent vari-




ation 1s in the scale of 7, i.¢., the scale of the density varia-
tions. For such times. the macroscopic evolution of the sys-
tem can be described i a single time scale r Thus,
S, = [n(r.)]; thatis, the macroscopic state vector contains
a single moment, the density.

Progressively less coarse-grained levels of deseription
can be defined by systematically using an additional mement
in the state vector. This assumes that the characteristic times
in the moment equations are not degenerate (i.e., character-
istic times are not equal). In this case, these are times for
which the higher-order moments have relaxed to a state in
which their scale of variation is the same as the moments
being used in the characterization of the macroscopic state.
If there was a degeneracy (for example, v, ' = v, '), then
the corresponding moments must be collectively taken as
components of the state vector. For cases of interest {carri-
ers in a semiconductor), the characteristic times are not, in
general, degenerate.® Thus, the next less coarse-grained level
of descriptionisin terms of S, = [n(r,2),€(r,r)]. Thisis val-

id for times in the order of v, '. From a practical point of

view, the least coarse-grained description of interest is in
termsof S, = [n(r,0),€(r,0).K(r,¢} ], which s valid for times
of the order of v, .

To make the equations that define the macroscopic
state, S§,, /= 1,2,3, determinate, the macroscepic-kinetic
distribution, f,,, must be found. The time scale ol /, must be
consistent with the level of description. Thus, v macroscopie
equation of evolution for f, needs to be derived and solved.
This is carried out below for each level of description of in-
terest; namely, S,, /i = 1.2,

A.The S, state (defined for times ~v 1)

In this case. only Eq. (2a) and the equation for
Sy =/ \; in the - time scale are necessary to describe the
evolution of the carriers. These two equations form a closed
set. The equation for £y, is obtained by changing the time
scale of the BTE [Egs. (1)] from the fine-grained to a 7
scale. This can be achieved using a technique introduced by
Bogoliubov.™ Mathematically, the change can be accom-
plished by the following relation:

Sy = £\ [wan(re)]. (4)
That 1s. in the 7 scale. the space-time dependence of the dis-
tribution Is not explicit, but implicit through a dependence
on the density. The equation governing the changes in f },
can be found using Egs. (1) and (2a). From Eq. (4), the
changes in f can be written as

A, f=d, [\ d.n, (5a)
V. =d, /%y V.n (5b)
Vef=VSu (5¢)

Subsequently, the subscript r is to be dropped from the space
gradient. The time derivative of the density may be eliminat-
vd from Eq. (54) by using Eq. (2a), rewritten in the form

an Jr'),, [y vde Vn + f I( f ) dx. (6)

After placing Eqs (5) and (6) into Eq. (1), the following
equation is obtained for the distribution:

d. 1, ( - ‘ d, fyvdeVn + fl(f"w)dx)

sve¥ad, £y (qE/f1) -V, /lw =1(fy). (7
If the deviation from spatial uniformity is small, a parameter
& can be introduced into Eq. (7) which is indicative of this

assumption. Using & as a basis for a perturbation expansion,
the distribution may be expressed as

k) = Z S f \ (k).

i

which substituted into Eq. (7) results in the foliowing equa-
tions:

Moy, ( — J‘a,, Suy dw-V'n)

[

AR WA I (AR

FN SN, Sy v V)

¢ _\;:o'—;{- EV, Sy =581 (8)
‘ 1 I3

where r—8 'r'; V=48V'. From Eq. (8), the zeroth order
equation s found to be

Cg/MENV [ k) =10 4 =0, o | 10S 4 ),
which has the general solution
1y k) = £\, (k)n(re, )

where /7, (&) obeys the equation
(q/ﬁ)E'V«f,lu,,(K) =[{( flw,,) - [\!_(K) [‘,( /"\r,, Ydk.

(10}

with the condition

fffw‘,(x)d-czl. (n

Note that the same symbol has been used for f , (k.n) and
/ u, (k). The context in which they are used determines the
argument. Equation (10) has the form of a steady state, ho-
mogeneous Boltzmann equation, and f }, can be identified
as the (zeroth order) steady-state distribution of a homo-
geneous assembly of carriers in a field defined by the local
value of the field. This is the distribution that exists at (r'.f)
if local equilibrium with the field is assumed. A number of
techniques are available for solving this equation.’ /|, can
also be obtained using Monte Carlo methods.” Noting from
Eq. (9) thatd, [, (x,n) = f , (k), theequation of 0(8) is
found from Eq. (8) to be

qE'an}w, —I(f,l;,‘) +ff‘w,, J'I(f‘w.)(llk
=f\ Jf.‘w”vdlc-V’n

~fwuvVn—nfi, f[(f.'w“)dx.

where the last term is an approximation to the correspond-

(12)
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where Sisthe RHSof Eq o121
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where
I‘Jw = ’ G(K‘K')( )\, (l\') ‘j]‘,(l\')

—~ v(k")dx" —j},»(x')v(x’))(lx'. ( 14b)

and

Gikw') fhy (KD

( 1‘/ [/ (K")]dk")dw'.

Since y £}, dx =0 (note that y fdw = nand 1 /7, dx has
been taken 10 be one). the '}, 's above must sausfy the
conditions  J fy, dk =0, i=0.1. This wmplies that
FGde=0.

The results obtained above can be summarized as tol-
lows. The distribution function in the r scale satisfies Eq.
(8). To first order 1n O, its sofution is given by

Su=fy (nes) + 81 Vn, (15)
where
/ “,‘(l\') /1\1('\) ’(S/\'.‘(K).

This result is the density gradient expansion which has
previously been a priori assumed for the distribution func-
tion > The use of Eq. (15) into Eq. (6) yields a diffusion-
tvpe equation for the density
) V'n+ D-V'Vn, (16)
where v, - v, is the effective drift velocity, and D is the
diffusion tensor under uniform field condition at the value of
the local field. v,, is the contribution to the drift velocity
resulting from the fact that ( 7( f)dk#0. These quantities
are defined as

dn= —(vy~v,

A\ ’ Vi, de, Yy = 5j1(fkl" e

D - _ojvf),,” d.

These coefficients depend on the applied field through the
/\'s. They can be tabulated as a function of field by numeri-
cally solving for the f,,'s and using the above equations.
Once these coefficients have been evaluated, Eq. (16) may
he used to describe the evolution of the carriers. Thus, in the
time scale, the above results correspond to nonequilibrium
diffusion theory. v, v, , and v, can be obtained at 7, , | using
Eq. (3). With this information, Egs. (2) are determinate at

-5.

¢ and can then be used to determine the state 5y at 7, ;.

A more accurate expression than given above for the
distribution in first order { £}, ) can be obtained by explicit-
Iy taking into account the space-time variation of the electric

ficld. That is, instead of Eq. (4), let
Jiwray = k(e E(r].

Following the steps subsequent to Eq. (4), an expression for

/"\, is obtained that in first order ( f}, ) is proportional to
the space and time derivatives of the electric field.*® With
this approach, no specific form need be assumed a priori for
ihie distribution function.”®*" Moreover, a similar procedure
can also be used to obtain more accurate expressions for the
distribution in the S, and S, states (see below). This exten-
ston of the theory presented is not going to be discussed
further.

B. The S, state (defined for times ~v')

In this case, Egs. (2a), (2b), and the equation for
Sy =/ 3 inthe 7, time scale are used to describe the system.
The procedure for obtaining the equation for f3, follows
along the same lines as the procedure for f}, (Sec. IIL A).
In this case, the change in scale is accomplished by the rela-
tion

Aty = f 3, [wn(re)érn]. 17
That is, in the 7, scale, the space-time dependence of the
distribution is taken to result from changes in the density
and mean energy. Note that f %, changes in two characteris-
tic time scales, 7 and r,. From Eq. (17), the changesin f
can be written as

3, /=0, fdn+ 3 fi0¢, (18a)
V.f=3,f%Vn+d, f1,VE (18b)
Vef=Vfu (18¢)

The time derivative of the density and mean energy may be
eliminated from Eq. (18a) by using Eqgs. (6) and (2b) re-
written in the form

c?,?:n"‘(—J‘a,,ffwevdnc'Vn—J‘Jz LeEvdk Ve

+qE-fvfi,dx+JeI(fﬁ,)dk). (19)

[ The term proportional to d, In n1s assumed to be small and
hence has been neglected in Eq. (19).] Note that in this case,
the average velocity u is obtained from

nu=Jvf§, dx. (20)

After placing Egs. (6), (19), and (18) in Eq. (1). the fol-
lowing equation is obtained for the distribution function:

anfi,(—j&,,fi,vdx-Vn«}-Jl(fi,)JK)
+5;fi,n"'(-f6,,fi,evdx'Vn

—Ja?fi,evd»c'V?—qu'J‘vfi, dx
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results obtned for 7y, [see Eqo oIS will be used as o

guide. That s let /7y be eapressad to first osder in spatial
pradients, by
P lRE) = (KEVn =y, (R
R KE; S e 1, ke T

BRE

[

The objective for the rest of this section 1s to arrive at the
lowest-order solution for /'3, Higher-order approsumations
and the effect of the gradient terms are to be considered
the future. Thus, only the first term in this expansion will be
retained. The equation for /3, is found to be

i (“ I I(f,:u‘_)d'\'>
~a.r3 (qE-’ Wi dk s | el )11.\-)
+ (g/ME-C [y =10y ). (23)

This is a nonlinear equation for f3, . Neglecting the first
term (assuming that the effective carrier gain integral 15
small), and using the following definitions:

w=u =u@ = [y d )

v;?:fel(f-’m)dx. (24b)
Equation (23) becomes
(gEu ~ v ey ad fy - (g/MEV, [y, =T(f).
(25)

At this fevel of approximation to f 3 (kn,€), Egs. (23),
160, and ¢ 19) form the closed set of equations that describes
the evolution of the system. /'3, is made to satisfy the fol-
lowing normalization conditions:

J.j”",f(x)dx =€, (26a)

| 7o a1, (26b)

The solution to Egs. (25) and (26) can be obtained as
follows. Performing a change of variables from (€k) to
(w.2% ), where

K K,a, * K
ca, 1> aumt vector paraltel to E),
Sk, €/u
[0 (;/ll(.
K K.

and, using the chain rule,

o d
o Ced = =

Ly Lty

J, J, u u

\

[tozerothorderind, u (€) ],
g R
P 250 becomes

gl ey oy (F

‘ o EYd Ly =TS,
(27)

where
gl v,&/u =y o (28)

Foro -« F,, ~ EY/E, small (or f5, aslow varying
function of ), the lowest-order solution to Eq. (27) satisfies
the tollowing equation:

SIS (29)

This cquation has the form of a steady-state BTE with gE,
as the source. Ttis equivalent to Eq. (10) that arises in con-
nection with the description of the S, state. Thus, to lowest
order the macroscopic-kinetic distribution function obeys a
steady-state BTE in an equivalent field. This observation has
a physical mterpretation. The actual field E appears as a
source term in the moment equations and as such causes
changes in the state S,. Since the equations describe the evo-
lution of S, in their characteristic time scales, variations in £
are “filtered™ by the equations; that is, as far as changes in S,
are concerned. Thus, it is the “filtered” field which the state
really “sees.” This “filtered™ field is the equivalent field in
Eq. (29).

Equation (29) can be solved numerically with £, as a
parameter. By requiring that

gL 0T

€ :J €(k) [y dk,

a tahle for € vs £, can be generated. Moreover, using Egs.
(3a) and (24), all unknown variables/parameters in Eqs.

{2a) and (2b) can be determined as functionals of £ or

equivalently € In this fashion, v = v(€). v, =1, (€). and
u = u (€). The system of equations describing S, is closed.

C. The S, state (valid for times ~v')

In this case, Eqs. (2a)-(2¢) and the equation for
fu =/} inthe 7, time scale are used in the description of
the system. In the spirit of Egs. (4) and (17), the distribu-
tion function is assumed to depend in space and time as (ol
lows:

Aert) = £ [n(re) € k(rn].

Although obtaining an equation for [, is straightforward,
its solution is more difficult to find than for cases S, and S..
This stems from the fact that, cven in zeroth order, it is an
equation in three variables (€,k,x).

In this paper, instead of proceeding to find an equation
for f3, and obtaining its solution, an approximate expres-
sion for f}, is presented. A more complete theory (in es-
sence, a more rigorous derivation of the expression present-




cd v wall be the subject of o future paper
T all cases ~nterest, the nonegmbibrium muacroscopie
cquations are sebved usimg numertoal methods © With those
methods, the ticld £ cach time stepas taken to be constant.
[hus, the solvton for 7y, ma ume step corresponds to the
approach o equilibrium of = mnial distnibution m the pres-
ence of o ticld sren wo orcaal value problem n cach nme
stept From the dscn stons in the presious sections, it s
Rnown that atteo L sutherent tme, the Umital distribution”™
will evolve tto £, aifthe tme step s long enough) Thus,
an apnroaunate expression for /£y, can be obtamed by as-
suning that this evolution can be maodeled by a relazanon
provess. Let the macroscopie state S.and /7y, be known at
tae s when ihe tield s Evre ). Note that the tield does not
change m the mterval (¢, ) and that the distribution
£ (1) (e, the distribution at time ¢t ) is not the equulibri-
um distribution for the field £ire). Thos mospinit of the
above discussion, the distributionat ime ¢~ p (wherepisa
continuous variahle) can be written as

f
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where v, s the average momentum exchange trequencey in
theintersal 0.0 )iy, po= 30 vt podp Thatis, f 4, ap-
proaches /74, exponentially, due to the relaxation of the fast
component ( f, — £ 1,) resulting from momentum trans-
fer at an average rate v, . The distribution at the end of the
interval s found by letting p = Ar in Eq. (30). once
S ywte ) stound. This procedure is to be repeated at cach
time interval. Note that to implement this approach f3,
must also be known at each step. This problem has been
discussed in Sec. 111 B.
A simple alternative to Eq. (30) istolet /|, beequal to
/% inthe calculation of the unknown variables in the macro-
scopic Egs. (2a)-(2¢). This substitution leads to the phe-
nomenological equations proposed by Shur ™ for space-inde-
pendent conditions.

IV.EXAMPLE: THE RESPONSE OF A HOMOGENEQUS
CONCENTRATION OF ELECTRONS IN GaAs TO ASTEP
CHANGE IN ELECTRIC FIELD

In this section, the response of a homogeneous concen-
tration of electrons in GaAs to a step change in electric field
s ivestigated using the theory developed in Sec. I11. For the
sake of simplicity, it is assumed that there is no particle gain;
that s, n(r.1) = const. Moreover, a single-valley model has
been used for the band structure. As mentioned in Sec. I, this
madel has severe limitations, particularly at the values of
licld under consideration. However, the objective of this ex-
ample s to dlustrate the application of the theory presented
in the previous section with a “model™ calculation. The evo-
lution of the electrons is discussed in the context of the S,
tme scales. This s dictated by the time scale of the applied
ficld For this example, Egs. (2a)-(2c) reduce to

€~ —v (€ —¢€,) +quE, (31a)

(3lﬁ: - "mﬁ+qE' (3]b)

whete €, s the mean energy corresponding to the lattice
temperature, po-- fik, and v, i = €, m, are obtained from Eqs.
iy and (3¢) with f=/f},.

I'hese equations have been solved numerically using fin-
ie difference techniques.'' At the jth time step, the mean
cnergy €( /) and average momentum p( j) are obtained from
the diserete equations, given their values and the rates at the
previous time step j-1. After substituting in Eqgs. (3b) and
t3¢) for £\, [Eq. (30)], the rates at the jth time step are
obtained trom

FABIE T Rate coethicients for electrons in GaAs computed in the S. de-
seniption as a function of £, or equivalently, as functions of €.

E. (kVeoem)  E(eV) (E—E)ve(10MeV/s) v, (e)(10'7s ")

i

01 0.319 00116 2.292
0.2 0.0336 0.042 16 2.684
03 0.03475 0.090 6 2.796
0.4 0.0357 0.156 6 2,894
0.5 0.036 3 0.239 2.933
0.6 0.0373 0.3413 2.95
0 R 0.0388 0.588 3.046
to 0.040 § 0.896 4 3103
11 0.0415 1.062" 313
P2 0.043 1.254 3.187
1.1 0.044 4 1.453 3216
14 0.0458 1.663 3.243
1.5 0.047 1 886 3.285
1.6 0.047 6 2.112 337
1.7 0.048 1 2.343 3.339
1.8 0.049 2 2.343 3.362
2.0 0.0559 2.892 3.517
22 0.062 3.487 3.534
2.5 0.070 4.285 3.638
5.0 02017 9.3 5714
10.0 0.3127 12.53 12.53
20.0 0.370 5 21.86 20.39
10.0 0.408 31.98 26.64
400 0.4412 42.6 31.92
50.0 0.4655 49.5 39.62
600 0.497 5 59.22 44.25
70.0 0.5229 68.48 49.04

v =[vG=D = v e ™ v (),
(32)

where i = €, m, and the superscripts correspond to rates in
the S, scales (see Sec. I1I C). The v!°"’s are obtained from
Egs. (3b) and (3c), with f=/3%,. f2, is obtained using
Monte Carlo methods.*? The values for the v/*'s obtained
from the Monte Carlo model*- are listed in 1 e T as a func-
tion of mean energy.

In these calculations, v, has been approximated by
v (J —1). Thisis the momentum exchange frequency at the
beginning of the interval. Thus, with €(j — 1), p(j — 1).
and v, (j — ) given, the values of €( /), (), and v, ( /) are
obtained by solving Egs. (31a), (31b), and (32). This pro-
cedure is repeated at each time step.

The evolution of the mean energy and average velocity
of the electrons in GaAs subjected to a step change in electric
field is shown in Figs. 1 and 2. Two cases are shown. These
correspond to two different time dependencies of the electric
field (see Fig. 3). The initial field is kept constant for a ime
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FIG. |. Evolution of the electron mean energy as a consequence of a step
change 1n the applied field (see Fig. 3). On the figures, the large dot, ~ohd.
long dash, and small dot lines correspond to the response obtained with the
S.S.and S, descriptions and Monte Carlo simulation, respectively. (a) and
(b) correspond to field changes shown in Figs. 3(a) and 3(b). respectively.

such that the electrons have attained equilibrium with the
field by the time the field begins to change. Also shown in
Figs. 1and 2 arc the results obtained using: (a) Monte Carlo
methods. with a three-valley model**; (b) Egs. (31a) and
{31b) with rates determined from the S, state (i.e., by letting
Jyu =3 and (¢) the S, state approximation.

The differences between the results obtained with the S,
description and the Monte Carlo in simulation in Fig. 2(a)
arise primarily from the fact that the S; description uses a
single-valley representation. For such high fields [see Fig.
3(a)] intervalley scattering dominates the scattering pro-
cess of electrons in GaAs. It causes the slower approach of
the average velocity (relative to the S, description) to the
equilibrium state. For lower fields [see Fig. 3(b)], a very
small fraction of the electrons gain sufficient energy to popu-
late the upper valleys through intervalley scattering. Be-
cause of this, the response of the carrier distribution to the
change in electric field is not determined by intervalley scat-
tering [as it is at higher fields; see Figs. 2(a) and 2(b)]; and
thus, it is faster than at higher fields. At lower fields, the
single-valley nonequilibrium moment theory results for the
mean energy are in very good agreement with the Monte

{ (a)

Aver.r e,

— .

Avergoge
»
i U W

5
Q

L —
P [
Time (psec)
FIG. 2. Evolution of the average velocity of the electrons as a consequence
of a step change in the applied field (see Fig. 3). The line symbols corre-

spond to those used in Fig. 1. (a) and (b) correspond to field changes:
shown in Figs. 3(a) and 3(b), respectively. .

Carlo results [see Fig. 2(b)]. However, the results for the
average momentum are observed to relax slower than the
Monte Carlo results. This is also in part due to the fluctu-
ations in the Monte Carlo results at low fields for the macro-
scopic rates obtained with the S, description. Presently, a
three-valley S, model is being implemented. The detailed
multivalley effect on nonequilibrium dynamics of electrons
will be discussed in the future paper. The evolution of the
system from the initial equilibrium state (/) to the final equi-
librium state (F) is displayed in (€u) space in Fig. 4. The
fast transient (nonequilibrium) behavior obtained with the
S. approximation is clearly contrasted with those obtained
from the S, approximation (which in essence yields an evo-
lution through a series of equilibrium states). As e..pected,
for fields changing in time scales « v, '. a description in
terms of S, is not satisfactory.

V. CONCLUDING REMARKS

Nonequilibrium descriptions of the dynamics of elec-
trons in a semiconductor under the influence of space-time
varying fields have been presented. These descriptions are
valid in different macroscopic space-time scales which are
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FIG. 3. Time dependence of the applied field corresponding to the results
shown in Figs. 1 and 2: {a) high-field and (b) low-field cases.

determined from the characteristic scales of the moment
equations. The results that have been presented in this paper
correspond to the lowest-order solutions of these descrip-
tioi.  In the fastest scale (S;), these lowest-order results
have been shown to be in reasonable agreement with those
obtained from a kinetic description. A number of issues re-
main to be addressed. Among these issues are (a) the
(more) quantitative description of the S, state, (b) the rela-
tive importance of higher order terms in the expansions of £,
and of faster time scales (S, or higher), and (c) the relation-
ship between a description in terms of S, and a modal de-
composition of the distribution function. These issues will be
discussed in a future publication.
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IV. ELECTRON ENERGY DISTRIBUTIONS,
TRANSPORT PARAMETERS, AND RATE
COEFFICIENTS IN GaAs

I. INTRODUCTION

Udor cortan coniditions, the behuvior ofan assembly of
corons o hoies g semiconductor, and mfluenced by
aee wvarving Helds s deseribed by the time-depen-
©osomchesscal density distribation, fTkoes) . in contigu-

roond momentum (ko space.! In multivalley semi-

cindietors with o diterent etfective mass in cach valley, a
doeseripiten of carrier behusior i terms of asingle distribu-
Morceover, transport
parameters and rate coetherents that appear in a single-val-

Lon tuncton miay net be adequate.

fov hvdrodynamie model do not reflect in such cases the
Jdynumies of the carrters. Thiv s especially true for values of
apphied field where intervalley scattering is significant. In
these cases, the transpaort parameters not only depend on the
transport properties, but also on the rate coeflicients. For
example. drift velocity. defined as the time rate of change of
the center of mass of a group of electrons,” will depend on the
averaged mtervalley scattering rate. This is due to the fact
that carriers moving with the group are scattered into valleys
with different masses (and consequently different dynam-
1es ) resulting in a change in the center of mass without (nec-
essanly ) any transport. Thus, in these situations, a multidis-
tribution description of the behavior of the carriers is
desirable at both the kinetic [ f, (k.r,1), where a denotes a
particular valley | and hydrodynamic (in terms of moments
of the £.,'s) levels.

The distribution function. transport parameters, and
rate coefficients in each valley can, in principle, be obtained
from Monte Carlo simulation®® or from solution of the
Boltzmann transport equation (BTE) by either iterative™”
or analytical' '~ techniques. At present, the Monte Carlo
approach has a number of advantages over the BTE ap-
proach: it is relatively easy to implement a six-dimension
(k.r) space simulation: it can be easily modified to accom-
modate any number of interactions between the carriers and
the background: and it provides considerable physical in-
sight into the behavior of the carriers, including fluctuation
phenomena.

In the Monte Carlo approach, the accuracy of the re-
sults depends (a) in transient situations, on the number of
electrons used in the simulation, and (b) in steady state, on
the total number of scatterings. A major drawback of the
Monte Carlo approach is that the simulation takes a consid-
erable amount of computer time, even when very few elec-
trons are used. This becomes more serious when simulating,
for example, the behavior of electron in a multivalley semi-
conductor subjected to low electric field. In this case, a very
small fraction of the electrons gain sufficient energy to popu-
late the upper valleys through intervalley scattering. For ex-
ample, in GaAs, less than 2% of the electrons are in the X
valleys when E = 20kV/cm (see Fig. 4). Thus, to obtain an
accurate representation of the behavior of the electrons in
the X valleys, it is necessary to use in the order of tens of
thousand electrons in the Monte Carlo calculation. Such a
large number of electrons make this approach, in some cases,
prohibitive.

To simplify the computational aspects of the Monte
Carlo approach, Rees”'* introduced the concept of self-scat-
tering. However, when the carrier scattering rates are in-

]
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creasing functions of energy, standard implementations of
this concept leads to a very large number of fictitious scatter-
g events along the carrier trajectories, and thus results in a
further increase in the computation time. We have devel-
oped a technique for reducing the number of self-scattering
cvents. Consequently, for a given CPU (central processing
unit) time, more test particles can be used in the simulation.
This results in a reduction in the fluctuation of the calculated
quantities. This technique is discussed in the next section in
the context of two generic time dependencies of the applied
field, namely. dc and a step change. In Sec. IV, results from
simulations of the steady-state behavior of electrons in a
three-valley model of GaAs are presented. Concluding re-
marks are given in Sec. V.

Il. THE MONTE CARLO TECHNIQUE

In the Monte Carlo approach for simulating the behav-
tor of carriers in semiconductors and influenced by space-
time varying fields, the initial distribution of carriers
[ f(k,r,0)] is specified. An initial number of test carriers are
then selected that are representative of this distribution, and
their evolution simulated using statistical methods.”'* In
this paper, it is assumed that energy € of an electron is related
to the wave-vector k through the equation* '

hk?/2m =€e(l + ae) , (1a)
where A is the Planck constant divided by 27, m 1s the effec-
tive mass of the electron with zero energy in the valley, and
is the nonparabolicity parameter. m and a depend on the
valley in which the electron is found. Equation (la) repre-
sents a nonparabolic energy band with spherical constant
surfaces and a scalar effective mass m. For a nonparabolic
energy band with ellipsoidal constant energy surface, the
€ — k relation is given by

n2(ki ki
A B L2 ) e 1+ aeti)], (1b)

2\m, m,

where m, and m, are the longitudinal and transverse compo-
nents of the effective mass tensor,'™'* and &, and &, are the
longitudinal and transverse components of the wave vector
of the electron. For the values of field of interest, Eq. (1)
represents a good approximation to more accurate represen-
tations for the band structure. Moreover, the use of Eq. (1)
in the trajectory equations is consistent with the formulation
of scattering rates as functions of energy. which assumes an
cnergy-momentum relation given by Eq. (1).

Note that it is sufficient to only discuss the case of an
energy band with spherical constant energy surfaces [Eq.
(1a)]. The resulting equations are also valid for the ellipsoi-
dal case [Eq. (1b)] if m is replaced with free-electron mass,
and the wave vector and electric field are replaced with the
Herring-Vogt transformed values.'>'*

The flight of an electron between scattering events is
calculated using the equation of motion (4 d, K = gE) and
either Eqgs. (1a) or (1b). The time r, between scattering
events is determined from the equation*

R, =1 —exp(— f'v,[emldz). (2)
0




where R i a uniformly distributed random number in the
wmterval [0.1], and v, s the total scattering rate, which is a
{unction of the tme-dependent clectron energy

Themntegral in Eq. ¢2) cannot, i general, fu cvaliated
amatvtically, To overcome this ditliculty, a fictiious scatter-
mg event is introduced such that the “new' total scattering
rate 1 would be constunt.™  This v, is taken to be greater
or equal to the minimum constant that makes v, () posi-
tive for all € in the expression [see Fig. 1(a)]

Vi = v (6) v (e) . (3)

v (€) 18 the scattering rate for the fictitious scattering
mechanism. This process causes no changes in the properties
of the electron along the trajectory. That is, the state k' of an
electron after a selt-scattering event is taken to be equal to it
state k before the event. With v, in Eq. (2) replaced by v
(which is constant ), the integral in Eq. (2) is evaluated, and
the duration of the free flight ¢, is found. The procedure for
determination of the scattering mechanism and direction
has been described in the other papers.®* From Eq. (3), note
that the number of self-scattering events is always much
greater than the number of real scattering eveats. To reduce
the number of self-scattering events resulting from the use of
Eq. (3), a step-shaped total scattering rate v;.(€) has been

TOTAL SCATTERING RATE (ARBITRARY UNIT)

.

€m
ENERGY (ARBITRARY UNIT)

FI1G. 1. Energy dependence of the total scattering rates. The solid lines rep-
resent the total scattering rate v {€). The dashed lines represent (a) a con-
stant total scattering rate vy, (b) a step-shaped total scattering rate v;.(¢€),
and (c¢) a total scattering rate v4 (€) given by Eq. (9a). €, is a maximum
electron energy; €, is a suitable boundary between two energy regions with
constant scattering rates.

proposed.” 1/} (€) 1s given by
) Vi €€
vi,L€e) -
Vs €€
where ¢, is a suitable boundary between two energy regions
with constint scatte: ing rates, namely v, and v, [see Fig.
1(b)]. The constants y ., and v ., are constant total scatter-
ing rates which include self-scattering. ¢, is then obtained
from Eq. (3), as discussed in Ref. 2.

The step-shaped total scattering rate, v;(¢€), outlined
above does not significantly decrease the simulation time
unless more steps are used. On the other hand, the use of
more steps cause difficulty in the implementation of the
scheme. This is because situations in which an electron tra-
vels across two or more energy regions without suffering any
scattering have to be considered.

To significantly reduce the number of self-scattering
events while keeping the implementation of the scheme rela-
tively simple, we propose the following scheme: (a) change
the integration variable in Eq. (2) from time ¢ to momentum
k; (b) use a quadratic polynomial to represent the total scat-
tering rate (including self-scattering) v%; and (c) use the
energy-momentum relation, Eq. (1), to carry out the inte-
gration.

Following this procedure, let v (€) in Eq. (2) be given
by v%; that is,

vi(€) = A + Be(l + ae) (4a)
and using Eq. (1),
vi(k) =A+ B(h*k?*/2m), (4b)

where 4 and B are constants, which are chosen from the
requirement that v, (€) in Eq. (3) must be positive and as
small as possible in the energy range of interest (see Fig.
1(c)]. After changing the variables of integration from ¢ to
k, and utilizing Eq. (4) and the equation of motion, Eq. (2)
becomes

k.

Ah

—dk —In(l1 =R}, (5)
k,,qE ko G n( 0 ¢

where k., is the initial value of the longitudinal component
of the wave vector k, k> = k2 + k2 + k Z, and we have tak-
en E along the z direction. E in Eq. (5) may be either space-
time dependent or constant. The piecewise application of
Eq. (4b) in the energy interval of interest results in further
reduction of the number of self-scattering events. The result-
ing total rate v¥ is further discussed in the next section.

Since space-time simulations are implemented as a se-
ries of time intervals in which the field is constant in time,*'’
it is only necessary to investigate the generic problems of
constant and step field variations. These two cases are con-
sidered below.

1. Static electric field: In this case, Eq. (5) reduces to

2mA omgE
k3 3(k2 )k In(! — R
R WS Ty e ( )
— ($2hk + 3k 2hq + k3 ) =0, (6)
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where A (A - A7 s the transverse component of the
wave vector which is constant during the free flight. Since
Fy coy hasonly oie real root it simplities the determination
ol s at the end ot the free light for a given random number
R .. The duraton of the free flight ¢, 1s then obtained from the
cquation of motion.

2 Step electric field: The case of a step variation in time
of the applied field can be treated in a similar way as for a
constant field. Let the applied field be in the z direction, and
equalto £, torr- 7, and £, fort > 1,. Todetermine the state
of the electron at the end of a free path. 1t 1s necessary to
know the location of the tree flight relative to that of the step.
This gives rise to two situations:

(1} An electron ends its free flight at -1, or starts the
free flight at ¢ -7, In these cases Eq. (6) 15 solved for the
longitudinal component of the wave vector k. at the end of
the free path, within £ = £, or £ = £, respectively.

(1) An electron begins its free flight at £ < ¢, and ends it
at £ 1, In this case, the integral in Eq. (5) can be decom-
posed mnto two regions (namely, £ = E, and £ = E,;) and
integrated to give

X -~ 2md 6mqFE,
kff’(/\';' ,)k.f—*——l(l—R +C, +C,
: J Th_B : B/ll [n 1)  + _]
ﬁ("—"}ik:l 3Kk, +k§,):o. (7)
h-B

where
Co=(Ah/7qE Yk, — ko) =A(t, —¢t,),
C, = (Bh ' /2mgE, [k (k. —ky)
UKL -k
t,,is the initial time of the free flight, and 4., is the longitudi-
nal component of the wave vector of the electron at t =1,.

The longitudinal component of the wave vector k, at the end
of the free flight is determined by solving this cubic equation.

1il. ELECTRON ENERGY DISTRIBUTIONS, TRANSPORT
PARAMETERS, AND RATE COEFFICIENTS IN GaAs

The Monte Carlo technique presented in the previous
section has been implemented to obtain the steady state and
step response of electrons in GaAs. As mentioned in the
previous section, these are the two generic problems which
form the basis for simulations with arbitrary time depen-
dence of the field. In this paper, the steady-state results are
discussed. The transient results are to be discussed in a fu-
ture publication. In Sec. III A, further computational details
are given. In Sec. I11 B, the gain in computation time that
has been achieved with the technique presented in Sec. Il is
illustrated. The results for the distribution function, trans-
port parameters, and rates coefficients are presented in Sec.
mc.

A. Further computational details

In the Monte Carlo simulations discussed in this paper,
a three-valley model (I",L,X) of GaAs has been used. The
scattering processes that have been taken into account are
polar optical, acoustic phonon, intervalley, and intravalley

scatterings. ™ The intervalley separations deg, and d¢
have been taken to be equal t0 0.33 and 0.522 ¢V, respective-
Iv."™ Alist of the material parameters that have been used in
the simulations is given in Table L. The values given in paren-
theses are those obtained by Pozela and Reklaitis' from best
fit to the data of Houston and Evans.™

To get an accurate representation of the steady state of
clectron behavior in each valley, up 1o 80 000 electrons have
been used in the simulations™' (each electron suffers at least
100 collisions ). The sampling procedure has been discussed
in detail elsewhere.”

B. llustration of gain in computation time

To illustrate the gain in computational speed that has
been achieved with the technique presented, we have carried
out comparative simulations with the three total scattering
rates discussed in Sec. II, namely, 1,1, v%, and v7. The
rate v is a modification of ¢ obtained by piecewise applica-
tion of Eq. (4b). We have used 14 for the rate in the [ valley
in one of our illustrations. Note *hat 14 approaches 1} in a
given interval when B—0. Thus, v% is the most general rate
that can be used to represent the total scattering rate while
still being able to carry out the integration in Eq. (2). This
can be considered as the use of quadratic splines for the rep-
resentation of the actual scattering rate. That is, in the "
valley, the energy interval is divided into two domains
(€ <Aer, and €> A€, ) and Eq. (4b) 1s applied to each
region. For € < A€, B is taken to be zero for illustration
(see below for further comments). The results are shown in
Table II. For the same number of electrons and simulation
time (10 ps), the number of real-scattering events are ap-
proximately equal. The number of self-scatterings (and total
scatterings), however, is considerably different. This also
applies to the computation (CPU) time. As seen from Table

I1, the computation time for the Monte Carlo simulations
using v} (constant total scattering) is approximately an or-
der of magnitude and four times larger than the computation
times for simulations using v4 [Eq. (4)] and v; (piecewise
constant total scattering), respectively. Further reductions
in the number of self-scatterings were obtained with v# (see
Table II).

At 10 kV/cm, the mean energy of electrons in the I’
valley of GaAs is about 0.23 eV below the threshold energy
Aer, . As mentioned in Sec. 11, for this mean energy, the
electron scattering rate in I" valley of GaAs is nearly con-
stant and results in a large self-scattering rate with the appli-
cation of v for the whole interval. Thus, in Table II, the
results for v (€) show approximately 200 self-scattering
events (more than 50% of total scatterings). This number is
reduced to less than 100 self-scattering events with the use of
v{as shown in Table I1 (approximately 30% of total scatter-
ings). The number of self-scattering events is expected to be
less if the constants A and B used for v4(¢) in each energy
region are optimized by properly partitioning the energy in-
terval. By dividing the total energy interval into more sec-
tions and applying to each section an equation of the form of
Eq. (4), the coefficient A, and B, (where j denotes the jth
section) can be chosen to minimize the number of self-scat-
tering.

-13-




TABLE L. GaAs materal parameters.”

Density (g/cm')

Sound velovity (cm )
Static dielectric constant
Optical dielectric constant
1.O phonon encrgy (cV)
Energy scparation (¢V

S0 (SN

S24 .10 (52

12.9
1092

tQYy

GLO1S 30 (0002

r-L 033
r-x 0.522(0.52)
7 e000) L1t X(100)

Nonparabolicity (eV ") 0.61 (0.62) 0.461 (0.5) 0.204 (0.3)
Effective mass (sn*/m,,) 0.063 0.222¢0.17) 0.58
Acoustic deformation
potential (eV) 7.0 9.2¢7.0) 9.7(1.0)
Intervailey phonon
energy (eV) (000) Lt X(100)
(000) 0 0.0278 (0.0299) 0.0299

Lo

0.0278 (0.0299)

0.029 (0.0299)

0.0293 (0.0299)

X(100) 0.0299 0.0293 (0.0299) 0.0299
Intervalley coupling

constant (10° eV/cm) " (000) L X(100)
[ (000) 0 1(0.18) 1
L(111) 1(0.18) 1(0.5) 0.5(0.1)
X(100) i 0.5(0.1) 0.7(1)

*See Refs. 18 and 19.

C. Steady-state behavior of electrons in GaAs
1. Energy distribution functions

To elucidate the physics of the steady-state behavior of
electrons in a three-valley model of GaAs we have obtained
the energy distribution of the electrons in each valley. These
distributions are shown in Fig. 2.

At low and medium fields (below 20kV/cm) where the
population of electrons in the X valleys is not significant,
these distributions have similar features as those obtained by
Fawcett and co-workers**"* " and Conwell and Vassell."* As
the field increases from zero, electrons are heated up rapidly
due to invariant polar optical phonon scattering® and the
distribution begins to flatten. However, because of strong
intervalley scattering, electrons with energy above the
threshold for scattering into the L valleys (Aer, ) are driven
into equilibrium with the L distribution. This distribution is
nearly a Maxwellian at the lattice temperature. For fields

above 10 kV/cm, a population inversion is observed in the I’
valley in agreement with the results of Fawcett and co-

2232

workers*2?** and Conwell and Vassell.'* This inversion is
due to the fact that intervalley scattering is nearly isotropic,

whereas polar optical scattering is primarily forward. On
average, half of the electrons scattered from the L to the I’
valley near the threshold energy Aér, lose energy to the field
and thus move to energy states below A€, . Since intervalley
scattering in this range is zero, these electrons represent an
“uncompensated” source into these states, thus creating the
observed population inversion. This type of distribution is
not stable and should lead to collective excitations (plas-
mons).** These excitations, however, are not taken into ac-
count in this model. However, in contrast to the two-valley
model, the population inversion is not very pronounced so
that the plasmon excitation rate should be small.

At higher fields (above 20 kV/cm), electrons in the L
valleys (as well as the tail of the I distribution) begin to heat

TABLE I1. Comparison of computation time for the techniques described in Sec. 1I. Simulation time is 10 ps. E = 10 kV/cm.

Number of Number of Number of CPU
Function for total scattering real scattering clectrons time*
total scattering rate for single clectron for single clectron in simulation (min)
Constant total
scattering rate v} 11000 150-190 2000 196
Three-level step-shaped
total scattering v 2300 150-190 2000 49
. (4) rat
Ea “,r) rate 350-390 150-190 2000 21
1% d 230-29%0 150-190 2000 17
L
“See Ref. 21.
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up and the L distribution cand twl of T distribution) begin
o Natten see Figo 270 Again, strong mntervalley scattering
drives the tal of the £ distribution (and che part of the I
Jdistribution above the threshold for scattering into the .Y
vafleys nintoequilibrium wath the X distribution. This distri-
bution 1y nearly a Maxwellhian at the lattice temperature,
This hehavior s similar to what happens between the L and
[ vallevs at low ticlds.

At much higher fields tabove S0 kV/em), the X distri-
pution also heats up. This leads to the heating of which in
turn heats up the tatl of the T and the L distributions, and all
three distributions begin to flatten (see Fig. 2). In this mod-
¢l there are no other mechanisms for cooling the tails of the
distributions. As previously mentioned, scattering into the X
sallevs prevents the population inversion in the [ valley to
hecome as pronounced as in a two-valley model. For the
ficlds investigated no population inversion is observed in the
L or T vallevs due to the flux of electrons from the .Y valleys
near threshold, although the trend for such a condition is
evident.

2. Rate coefficients

Macroscopic (moment) descriptions of carrier dynam-
ics in semiconductors require knowledge of the rate coefli-
cients that appear in the corresponding equations. In a one-
moment description (in terms of the continuity equations
for carrier densities), the necessary rates are the averaged
carrier gam or toss rates. At applied fields for which the
population of the upper valleys becomes significant, a multi-
sadley macroscopic deseription is 2-sirable. In this case, car-
rier gain or foss i each valley s due fut lo - arrier densities
and at fedds tor winch impact 1onization 1s negligible) to
mtersalley scattering.

With the code described in Sec. I1, we have obtained the
averaged (over the distribution) intervalley scattering rates
for carrier gain or loss as a function of applied field. The rates
are shown in Fig. 3. These rates are defined as follows:

3w
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FIG. 3. Averaged transition rates as a function of applied electric field. Sol-
id lines represent the transition rates from upper to lower valleys. Dashed
lines represent the transition rates from lower to upper valleys.

N, = f&,(k)ﬁ(k)dk,

where / and j represent the ', L, or X valleys, S, is the
microscopic intervalley scattering rate from the / valley to
the j valley, /, is the distribution in the / valley, and N, is the
population of the ¢ valley. Their field dependence follows
from the behavior of the distributions and the microscopic

intervalley scattering rates. Since the microscopic scattering

FIG. 2. Energy distributions of electrons in each
valley of GaAs for different electric fields. The
numbers correspond to the applied electric felds in
kV/cm.

Mean Energy (eV)
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rates from the upper to lower valleys have no strong energy
dependence, and the distnbution Function in the upper val-
fovs does notchanee snuuticantly with field (see Fig. 2.0 the
rofding of the two Tunctions lead o nearly constant average
mnacroscopic rates. On the other hand, seattering from lower
toupper valless invelves the tail of the corresponding distri-
hutions tsince onldy electrons with energy above the thresh-
old can participaae ) Since the tatl of the distribution are very
sensitne o the tield. the folding of the two functions is
strongly ticld dependent.

At Jow tields the average rates for scattering into the
upper valleys are smaller than their respective inverse rates.
As the field increases above 3.5 KV/cm (see Fig. 3), the
average scattering rate into the L valleys, v, , becomes com-
parable toitsinverse v, o (higher than 109 of v - ), and the
population of electrons in the L valleys increuses drastically
(see Fig. 4). Above 35 kV/cm, the average scattering rates
into the Yvallevs, vy and vy, become comparable to their
respective mverses. vy and vy, | resulting in an increase in
the population of the Y valleys with a concomitant decrease
in the population of the L valleys (see Fig. 4). As previously
mentioned at these fields, the tail of the distributions heat up
Jdue 1o the heating up of the population (see Fig. 2). The
scattering out of the X vallevs into the L and T valleys is
greater that out of the L vallevs into the I valley. This has a
considerable effect on the dynamics of the carriers at these
fields in steady state and in transient situations. This is illus-
trated in the nex* <ection with regards to the steady-state
transport parameters.

3. Average velocity and mean energy

The technique discussed in Sec. I1 has permitted the use
of a large number of electrons in our simulations. As a conse-
quence, we have been able to observe steady-state transport

properties which are not clearly exhibited in simulations
with Jarge fuctuations esmall number of particles). Here,
we present the results we have obtained for the average ve-
jocity and the mean energy for clectrons in cach valley.
The averuge velocity ineach valley is shown in Fig. 5(a)
asafunction of field. Also shown is the total average velocity
Gy taveraged over all electrons irrespective of their valley)
and representatine experimental results. """ The total
average velocity has a maximum at a field equal to 3.8 kV/
cem and rapidly decreases with increasing field until it be-
comes nearly constant for fields above 10 kV/cm [see Fig.
S(ay|. This behavior is well known and is the result of inter-
valley scattering (which is isotropic) and the fact that the
electrons have a higher effective mass in the upper valleys.
At low fields (below 10 kV/cm), our calculations of
average veiocity are in good agreement with the results of
Ruch and Kino.”* However, the calculated peak velocity is
slightly lower than the experimental value which occurs at
3.5 kV/cm. In the high field range (above 20 kV/cm), our
calculations of average velocity fit the data of Riginos™ quire
well for values of fields up to 70 kV/cm. These values are
16% higher than those obtained by Houston and Evans.™
These differences are reflected in the values of the material
parameters used in the calculations (see Table ). The frac-
tion of the electron population in the upper valleys as a func-
tion of field is shown in Fig. S(b). This figure covers the
range of fields near the maximum of the total average veloc-
ity and illustrates the decreasc in (1) as the populatien in the
upper valleys increases. The I valley average velocity (v )
is observed to reach a maximum at a larger field, namely 5.5
kV/cm.?” Between 5.5 and 10kV/cm, (v, ) makes a “transi-
tion” to a lower value and remains nearly constant with field
until at 35 kV/cm a second “transition’ to a lower value is
observed. These transitions have, in part, the same origin;
namely, the fact that intervalley scattering is i1sotropic. For

1.00; ‘ .

L(111)

FRACTION OF ELECTRONS IN EACH VALLEY

300°K ‘

F1G. 4. Fraction of electrons in each valley as a
function of applied electric field.

10 20 30 40 50
ELECTRIC FIELD (k V/cm)

60 70
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detds above the fiest eritical tield, seatering trom £ovableyvs
o I oaalley tandomizes the electron momentunt in the T
vaties and thus decreases <o 0 AU high ficlds above the see-

and cnnead ticlds the populanion i the Lovalleys s observed

to decreuse with a concomitant inerease t the population off

the Vvalleys osee Frgo 40 Since the scattering from the v
vallevsinto the T ovatley s alwavs larger than scattering from
the L valicys, there is anincerease in the number of electrons
with random momentum transterred into the I valley above
33 kViem. This effect lowers the average velocity. A shight
decreases in the slopes of both (¢) and (v, ) are also ob-
served. From Fig. 5, the mobilities in the lincar region are
caleulated to be 8800, 520, and 110cm™/'V sforthe ', L and
Avalleys, respectively.

The average electron energy incach valley relative toats
lowest energy are tltustrated in Frgo 6. For low ticlds, the
electron energy in the I valley increases raptdiv with tield.
In this range the dominant scattering process s mvariant

polar scattering. Above 10 kV/cm, where population myver-
sion is observed in the [ valley, the strong intervalley scat-
teriye process takes energetic electrons out of the I valley,
thus reducing the rate of average energy increase. In the
upper vallevs, the average energy varies almost linearly with
ficld. Thisis due to the high intervalley scattering rate in the
upper valleys.

IV. CONCLUDING REMARKS

In this paper, a technique for implementing the Monte
Carlo Method with self-scattering has been presented. This
technique leads to large savings in computational time, and
thus allows, for a given CPU time, an increase in the number
of test particles used in the simulation. This reduces the sta-
tistical fluctuation in the calculated quantities. With a code
that uses this technique, we have investigated the steady-
state behavior of electrons in a three-valley model of GaAs
and influenced by a dc electric field.

T BT A T R ¢ T IS T T T

Ruch and Kino (o]
/ - :
~ — Houston and Evans A
— — Riginos a ‘{

[

Y (1

-
FIG. 5. (a) Total average velocity (v) and the
average velocity in each valley as a function of
applied electric field. Also included are the ex-
e X o perimental results by Houston and Evans (see
ELECIRIC FIELD (V/om) Ref. 20), Ruch and Kino (see Ref. 25), and
Riginos (see Ref. 26). (b) Total average ve-
2.5 0.2 locity (v}, the average velocity in ' valley
300°K - ,,’— - >—J » {vr), and the fractior_n of electrons.in upper
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At low ficlds, the results obtained agree well with pre-
vious thearetical and experimental results. At high fields, we
bave observed a second transition region where the average
velecuty in the T ovallev rapidly changes with field. This
change 15 due to the increase in the population of the X val-
fevs and the farge X-to-T scattering rate. This process also
has an effect on the behavior of the distribution function,
clectron population in each valley, and the transport param-
cters for fields at and above the transition region. In particu-
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Moment Descriptions of Electron Transport in Multi-
valley Semiconductors.* M. CHENG, E. E. KUNHARDT, Weber
Research Institute, Polytechnic U. -- A multi-valley moment
description of carrier transport in semiconductors is presented that
makes no apriori assumptions about the shape of the carner
distribution in k space. It is based on the macro-kinetic model® for
electron transport In this model, a macro-kinetic distribution
function is obtained in terms of carrier mean energy and
momentum. This distribution is then used to evaluate the
unknown rates and parameters in the multi-valley moment
equations. To illustrate the theory, the results obtained from
single-valley and multi-valley moment equations are compared to
those obtained from a Monte Carlo method using a multi-valley
model.
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Macro-Kinetic Models of Electron Transport i
Semiconductors.* E. E. KUNHARDT, M. CHENG, Webe

Research Institute, Polytechnic U. -- A nonequ111br1um macro-
kinetic model that describes the behavior of carriers in a
semiconductor subjected to space-time varying fields has been
developed. The model is obtained by proper closure of the
moment equations through the introduction of a macroscopic
carrier distribution function, fypq. This distribution is shown to obey
a macro-kinetic equation' which, together with the finite set of
moment equations, constitutes the model. This set can be used to
describe the nonequilibrium behavior of carriers in the time scale
corresponding to the characteristic times of the moment equations.
Three levels of descriptions have been obtained by ordering the
moment equations according to the characteristic times. The first
three characteristic times are ordered as follows: 7>r, > 7,
where 7, 7., and r,, are carrier, energy and momentum relaxation
times, respectlvely The first (S;), second (S;) and third (S;)
levels of descriptions are valid for times in the order of 7, 7., and
Tm, respectively. Results obtained for carrier transport in GaAs
are presented.
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